Silane and Germane Molecular Electronics
Author(s):
Timothy A. Su, Haixing Li, Rebekka S. Klausen, Nathaniel T. Kim, Madhav Neupane, James L. Leighton, Michael L. Steigerwald, Latha Venkataraman, Colin Nuckolls
Journal:
Accounts of Chemical Research
Year:
2017
Volume:
50
Pages
1088–1095
DOI:
10.1021/acs.accounts.7b00059
Abstract:
This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si–Si and Ge–Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, β. Comparison of the different β values demonstrates that Si–Si and Ge–Ge σ bonds are more conductive than the analogous C–C σ bonds. These molecular trends mirror what is seen in the bulk.