top of page
< Back

The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgTSS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions

Author(s):

Hyo Jae Yoon, Carleen M. Bowers, Mostafa Baghbanzadeh, George M. Whitesides

Journal:

Journal of the American Chemical Society

Year:

2014

Volume:

136

Pages

16–19

DOI:

10.1021/ja409771u

Abstract:

This paper describes a physical-organic study of the effect of uncharged, polar, functional groups on the rate of charge transport by tunneling across self-assembled monolayer (SAM)-based large-area junctions of the form AgTSS(CH2)nM(CH2)mT//Ga2O3/EGaIn. Here AgTS is a template-stripped silver substrate, -M- and -T are “middle” and “terminal” functional groups, and EGaIn is eutectic gallium–indium alloy. Twelve uncharged polar groups (-T = CN, CO2CH3, CF3, OCH3, N(CH3)2, CON(CH3)2, SCH3, SO2CH3, Br, P(O)(OEt)2, NHCOCH3, OSi(OCH3)3), having permanent dipole moments in the range 0.5 < μ < 4.5, were incorporated into the SAM. A comparison of the electrical characteristics of these junctions with those of junctions formed from n-alkanethiolates led to the conclusion that the rates of charge tunneling are insensitive to the replacement of terminal alkyl groups with the terminal polar groups in this set. The current densities measured in this work suggest that the tunneling decay parameter and injection current for SAMs terminated in nonpolar n-alkyl groups, and polar groups selected from common polar organic groups, are statistically indistinguishable.

© Molecular Junction Database | University of Southern California. All rights reserved.

bottom of page