Single Molecule Magnetoresistance with Combined Antiferromagnetic and Ferromagnetic Electrodes
Author(s):
Alexei Bagrets, Stefan Schmaus, Ali Jaafar, Detlef Kramczynski, Toyo Kazu Yamada, Mébarek Alouani, Wulf Wulfhekel, Ferdinand Evers
Journal:
Nano Letters
Year:
2012
Volume:
12
Pages
5131-5136
DOI:
10.1021/nl301967t
Abstract:
The magnetoresistance of a hydrogen-phthalocyanine molecule placed on an antiferromagnetic Mn(001) surface and contacted by a ferromagnetic Fe electrode is investigated using density functional theory based transport calculations and low-temperature scanning tunneling microscopy. A large and negative magnetoresistance ratio of ∼50% is observed in combination with a high conductance. The effect originates from a lowest unoccupied molecular orbital (LUMO) doublet placed almost in resonance with the Fermi energy. As a consequence, irrespective of the mutual alignment of magnetizations, electron transport is always dominated by resonant transmission of Mn-majority charge carries going through LUMO levels.