top of page
< Back

Chemical control over the energy-level alignment in a two-terminal junction

Author(s):

Li Yuan, Carlos Franco, Núria Crivillers, Marta Mas-Torrent, Liang Cao, C. S. Suchand Sangeeth, Concepció Rovira, Jaume Veciana, Christian A. Nijhuis

Journal:

Nature Communications

Year:

2016

Volume:

7

Pages

1-10

DOI:

10.1038/ncomms12066

Abstract:

The energy-level alignment of molecular transistors can be controlled by external gating to move molecular orbitals with respect to the Fermi levels of the source and drain electrodes. Two-terminal molecular tunnelling junctions, however, lack a gate electrode and suffer from Fermi-level pinning, making it difficult to control the energy-level alignment of the system. Here we report an enhancement of 2 orders of magnitude of the tunnelling current in a two-terminal junction via chemical molecular orbital control, changing chemically the molecular component between a stable radical and its non-radical form without altering the supramolecular structure of the junction. Our findings demonstrate that the energy-level alignment in self-assembled monolayer-based junctions can be regulated by purely chemical modifications, which seems an attractive alternative to control the electrical properties of two-terminal junctions.

© Molecular Junction Database | University of Southern California. All rights reserved.

bottom of page